无穷大似乎是一个非常遥远的概念,但有时你可以用非常简单的数学来驯服它。 考虑一个零,后面跟着一个小数点和一个无限长的九的字符串,写成 0.99999.... 这个无尽序列的值是多少? 奇怪的是,答案是它正好等于 1。 这里有一个证明方法。
广告
1) 首先,定义 x 为 0.99999.... 2) 接下来,将 x 乘以 10 得到 10x。 我们知道 10 乘以 0.99999.... 等于 9.99999....,所以这意味着 10x 等于 9.99999.... 3) 现在从 10x 中减去 x 得到 9x。 这就是 9.9999.... 减去 0.99999....,等于 9(小数点右边的部分消失了,因为它们相同)。 4) 所以 9x 等于 9,这意味着 x 等于 1。 5) 但是根据定义,x 等于 0.99999....,所以我们得出结论 0.99999.... 等于 1!














